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Let (f denote a q-skew a-derivation of an algebra R and 

R(~) = {r e R I ~(r) = 0} 

stand for the subalgebra of invariants. We prove that R (6) is left artinian 

iff R is left artinian provided R is semiprime and the action of 5 on R is 

algebraic. 
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The subalgebras of invariants under the action of Hopf algebras have been 

extensively investigated by many authors (cf. [11]). In particular, the rela- 

tions between various finiteness conditions of algebras and their subalgebras of 

invariants have been studied. The action of skew derivations naturally appears 

in this context, since skew primitive elements of Hopf algebras act as such maps. 

In the paper we consider the behaviour of the artinian property under the 

action of a single q-skew a-derivation 5 on a semiprime algebra R. We prove, in 

Theorem 2.4, that R has to be left artinian provided the subalgebra of invariants 

R (~) is left artinian and the action of 5 on R is algebraic. Theorem 4.5 offers the 

converse of the above result in case the action of a on R is also algebraic. We do 

not know whether the additional assumption on a is necessary. 

When 5 is a usual derivation (i.e. a = idR), then the above theorems are 

known (el. [5], [7]). It was also shown in [5] that the analogous theorems hold 

for the action of algebraic automorphisms under some extra assumptions on the 

characteristic of R. Notice that idn - a is 1-skew a-derivation of R for any 

automorphism a of R. Thus Theorems 2.4 and 4.5 also apply to invariants of the 

action of algebraic automorphisms and no assumptions on the characteristic of 

R are necessary. 

1. P r e l i m i n a r i e s  

Let R be an associative algebra over a field K and let a be a K-linear auto- 

morphism of R. Recall that  a K-linear map 5: R --} R is a a-derivation if 

 (rs) =  (r)s + 

for all r, s E R. Furthermore, we say that 5 is a q-skew derivation if there exists 

a nonzero q E K such that 5a = qah. 

Subsets A of R such that a(A)  = A and ~(A) C_ A are known as a-stable and 

5-stable, respectively. Subsets satisfying both properties are called (a, 5)-stable. 

If A is a (a, 5)-stable subset of R, we let 

A (~) = {a e A IS(a) = 0} 

denote the invariants of A. 

Henceforth we will assume that R is a semiprime algebra and 5 is a q-skew 

derivation of R which is algebraic over K.  By this we mean that  there are 

k, n > 0 and elements a,~, . . . ,  a l ,ao E K such that 

(1.I) anhn+k(r) + an_ lhn+k- l ( r )  + . . .  + alhk+l(r)  + aohk(r) = O, 
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for all r E R, where a0 ~= 0. Clearly we may assume a0 = 1. We let t: R --4 R be 

defined as 

t = an5 '~ + . . .  + a15 + i d n .  

Sometimes, to emphasize that t is defined with respect to 5, we will write t~ 

instead of t. 

It is clear that t is a homomorphism of right R(~)-modules and 

t (R)  = {r E R I Sin(r) = 0 for some m >__ 1} = {r �9 R [ ~k(r) = 0}. 

If k -- 1, then we say that 5 is separable and in this special case, t maps R 

onto R (6). It is known (cf. [2]) that t (R)  is a (a, 5)-semiprime subalgebra of R, 

provided 5 is q-skew. For general skew derivations, t (R)  does not have to be a 

subring. 

We begin with the following easy observation: 

LEMMA 1.1: Let  I be a nonzero a-stable ideal of  R.  Then I contains a nonzero 

(a, (f)-stable ideal and I M R (~) ~ O. 

Proo~ Notice that since I is a a-ideal of R, 5i(I  (n+k)) c_ I for any i >_ 0, 

where n + k is as in (1.I). Since 5 is q-skew, the above inclusion together with 

semiprimeness of R imply that N ~ 0  5-i  (I) r 0 is a nonzero (a, 5)-stable ideal of 

R contained in I. Now, the second part of the lemma follows from [2, Theorem 

2]. | 

In the sequel we will often make use of the following: 

LEMMA 1.2: Suppose that either q is a primitive m- th  root of  unity or q = 1 

and charK = m. Then: 

1. 5 '~' is a 1-skew a'~-deriwation. 

2. t~(R) = t~, , (R).  

Proof: The first statement is a part of [3, Lemma 3.8]. 

t~(R) is the zero eigenspace of 5, thus it is also the zero eigenspacc of 5 m which, 

by definition, is equal to t~m (R). | 

The following lemma is a generalization of [7, Lemma 2.1]; it collects basic 

properties of the map t. 

LEMMA 1.3: Suppose that  ~ i s / - s k e w  derivation, i.e. 5a = acf. Let  T = t (R)  

and A = kert.  Then: 

1. t (T)  = T.  
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2. A T M T = O .  

3. R = T ~ A as right R (~)-modules. 

4. I f  I is a left ideal o f  T then R I M  T = I.  

5. I l L  is a nonzero one-sided ideal o f  R,  then t (L)  # O. 

Proo~ The  proof  is similar to the one of [7, L e m m a  2.1]. As an example  we 

present  the proof  of (2) and (5). 

(2) The  restr ict ion of (i to T is a ni lpotent  1-skew derivation of T of index 

k. Let  T~ = { r E R l ( i ' ( r ) : 0 }  f o r i : 0 , 1 , . . . , k .  Then  To = 0 ,  Tk = T a n d  

5(T~) C_ T~-I  for 0 < i <_ k. 

Since (ia = a(f, ta  = at  and consequently A = ke r t  is (a, 5)-stable. 

Let  1 < i < k, r E Ti and a E A. Using the definition of t it is easy to see t ha t  

t (ar)  E t (a)r  + span K {aJ(i'(a)(i~(r) ] j , s  >_ O, l >_ 1} 

C_ t (a)r  + ATi -1  = ATi -1  

as a E A = kerr .  Hence t k ( A T )  C_ ATo = 0. Thus  for r E A T M T 1 ,  r = t(r)  = 

tk( r )  = 0. Therefore  A T  M T --- 0 follows, as A T  M T is a (i-stable subspace of T.  

(5) Let  L be a one-sided ideal of R. Assume t (L)  = O. Since t, a,  (i commute ,  

eventual ly  enlarging L, we may  assume tha t  L is (a, 5)-stable. Thus  (ill is a 

1-skew derivat ion of L satisfying a,(51L)" + - . .  + alh[L 4- idL = 0. This  implies 

L (~) = 0, so L = 0 by [2, Theorem 2]. I 

As an immedia te  appl icat ion of the above l emma  we get the following: 

PROPOSITION 1.4: Suppose that q is a root of  unity. I f  R is left art inian then 

t (R)  is left artinian. 

Proo~ By L e m m a  1.2 we may  assume tha t  q : 1. Now the thesis is a 

consequence of L e m m a  1.3(4). I 

2. R (~) is artinian implies R is artinian 

Suppose ( f  k = 0 and set P~ = { x E R I h ~ ( x ) = 0 }  f o r 0  < i < k. Notice tha t  

Ro = 0, R1 = R (~) and Rk = R. I t  is clear t ha t  5(R~) C_ P~_] and, since 5 i s  

q-skew, a(R~) = P~ for 1 < i < k. We also have 

(i(R(~)P~) = ~(R(~))(i(P~) c_ R(~)R,_I 

for any i E {1, 2 . . . .  , k}. Using the above formula and an inductive argument, 

it is easy to check that R($)Pq C_ Ri for any i. This shows that Pq's are left 

R(~)-modu]es. In fact, one can see that R4's are (R (~), R(6))-bimodules. 



Vol. 121, 2 0 0 1  CONSTANTS OF ALGEBRAIC q-SKEW DERIVATIONS 269 

The image of the restriction d~ of a-15 to P~ is contained in P~-I  and di: R~ 

P~-I  is a homomorphism of left R(~)-modules whose kernel is contained in R (~). 

Similarly, the restriction of 6 to Ri is a homomorphism of left R (~)-modules into 

R,-I.  Therefore, if m~)R (~) ( R ~ ) )  satisfies a module property which is closed 

with respect to taking submodules and extensions (for example: DCC, ACC, 

Goldie, Krull dimensions) then R(~)R (RR(6)) satisfies the same property. Thus, 

in particular, we have: 

PROPOSITION 2.1: Suppose that 5 is algebraic. I f  R (~) is left (right) artinian, 
then t(R) is left (right) artinian. 

LEMMA 2.2: Suppose that R (~) is left artinian. Then t(R) is semiprime artinian. 

Proo~ By [2, Theorem 6] and Proposition 2.1 we know that t(R) is (a, 5)- 

semiprime and left artinian. Moreover, when q is a root of unity, we may use 

Lemma 1.2 and assume that q = 1. 

Let B denote the prime radical of t(R). Notice that B is nilpotent since t(R) 
is left artinian. 

If either q is not a root of unity or charK -- 0 and q = 1 then, by [9, Lemma 

2.5], B is (a, 6)-stable. Hence B = 0 and t(R) is semiprime in this case. 

Suppose charK = p # 0 and q = 1. Then 6 p" is a 1-skew a p"-derivation for any 

n 6 N. Thus, eventually replacing 6 by its suitable p-power, we may assume that  

6 is separable, i.e. t(R) = R (~). Then, by [2, Corollary 7], t(R) is a-semiprime 

and in fact semiprime, since B is nilpotent and a-stable. | 

LEMMA 2.3: Suppose q is not a root of unity. Then every algebraic q-skew 
derivation is nilpotent. 

Proo& Let /~ denote the algebraic closure of the field K.  Replacing R by 

R | K,  a by a | id R and 6 by 6 | id R we may assume that 6 is a q-skew 

algebraic derivation of an algebra R over an algebraically closed field K.  Let 

0 # v 6 R be an eigenvector of 6 with eigenvalue A. Then for any i 6 N we have 

6ai(v) = qiai6(v) = qiAai(v). 

Thus qiA is an eigenvalue of 6 for any i 6 N. Since 6 is algebraic, it has only 

a finite number of different eigenvalues. This implies that A = 0 is the only 

eigenvalue of 6 since, by assumption, q is not a root of unity. Therefore 6 is 

nilpotent. II 

Now we are ready to prove the main result of this section. 
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THEOREM 2.4: Suppose that (i is an algebraic q-skew derivation of R. I f  R (~) is 

left artinian, then R is left artinian. 

Proo~ Suppose R (~) is left artinian. Let T = t(R).  Then, by Lemma 2.2, T is 

semiprime artinian. 

If q is not a root of unity then, by Lemma 2.3, ~ is nilpotent. Thus R = T and 

the thesis follows. 

Suppose that q is a root of unity. Then, by Lemma 1.2, we may assume that  

q = l .  

Note that  R is left nonsingular. Indeed, if the left singular ideal Z of R would 

be nonzero then, by Lemmas 1.1 and 1.3(5), Z M T would be a nonzero ideal of a 

semiprime artinian algebra. Thus Z would contain a nonzero idempotent, which 

is impossible. 

We claim that if L is an essential left ideal of R, then L contains an es- 

sential left ideal L,  which is (i-stable. To this end it is enough to show that 

L M ( I - I ( L )  is essential. Let a �9 L be such that ( L M ( I - l ( L ) ) M R a  = 0 and 

A = {r e R I r(f(a) �9 L}. Then A is an essential left ideal of R and for any r �9 A 

we have 

a - ' ( r ) a  �9 L and 5(a- l ( r )a)  = ( i (a - l ( r ) )a+rS(a)  �9 L. 

This shows that a- l ( r ) (a )  �9 (LM(I-I (L))NRa = 0. Thus a - l ( A ) a  = 0 and a = 0 

follows, since R is left nonsingular. This implies that L fq ( i- l(L) is essential. 

Now we will show that R does not contain proper essential left ideals. Suppose 

that  L is a proper essential left ideal of R. By the above we may assume that L 

is (i-stable. Then Lo = t(L) = L M T  and Lo ~ T a,s 1 r Lo. Since T is semiprime 

artinian we can pick 0 -fib �9 T such that L0 M Tb = O. First note that b ~ R (6). 

Let L = {r �9 L I rb �9 L}. Then L and L, are essential left ideals of R. Moreover 

L,b r 0, because R is left nonsingular. If b �9 R (~) then, by Lemma 1.3(5), we 

would get 

0 r t(L,b) = t (L,)b C_ L M T b  = Lo fqTb = 0 

which is impossible. 

Set Ti = ker(i i, 0 < i < k where k is as in (1.I). Let s be the smallest integer 

such that there exist 0 ~ b E Ts and essential (f-stable left ideal L of R such 

that  Lo N Tb --- 0. The above implies that s > 1. Moreover, since (i(b) E T8-1, 

JoMT(i(b) ~ 0 for any essential (f-stable left ideal J of R. Let S denote the socle of 

R. Notice that  S = N {J  I J is essential in R} = Q {J,  ] J is essential in R}. 

Hence, since S is a-stable, both S and So = t($) = S fq T are (a,(i)-stable. 
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Because T is left artinian and the intersection of finite number of essential left 

ideals is essential, there exist an essential 5-stable left ideal J of R such that 

J c L and 

(2.I) So ~ T~(b) = Jo M T~(b) ~ O. 

On the other hand, ,Sob C_ ,So N T C_ L M T = O. Since SO is (a, 5)-stable, this 

yields also that So(f(b) = 0. Therefore (So M Tb(b)) 2 C_ SOTS(b) = SOb(b) = 0 and 

`so MTb(b) = 0 follows, as `so MTb(b) is a left ideal of a semiprime algebra T. This 

contradicts (2.I), and shows that R does not contain proper essential left ideals. 

Therefore every left ideal of R is a direct summand of R and, consequently, R is 

left artinian. I 

3. Go ing  d o w n  in case w h e n  5 is nilpotent 

Throughout this section we additionally assume that R is a-simple (i.e. R does 

not contain a-stable ideals), 5 is a nilpotent q-skew a-derivation. 

Let R[x; a, 5] denote the skew polynomial ring with coefficients written on the 

left. It is known (cf. [3]) that a has an extension to an automorphism of R[x; a, 5] 
such that a(x) = q- ix .  

Consider the natural number n = n(R) = min{k I r.annn(~k(R)) r 0}. Let 

(x'*) be a two-sided ideal of R[x; a, 5] generated by x n. Notice that any ele- 

ment from (x '~) is of the form ~-~i>0 ri xi, where r0 belongs to Rbn(R). Therefore 

R M (x n) C_ Rbn(R), so R M (x n) is a-stable ideal of R with nonzero right annihi- 

lator. The assumption imposed on R implies that R M (x n) = 0. Let M denote a 

a-stable ideal of R[x; a, 5] containing x n and maximal with respect to the prop- 

erty that R f-I M -- 0. Next we let ]} denote the factor ring R[x; a, 5]/M and we 

let y be the image of x in R. Then it is clear that R embeds in R. Note that a 

can be extended to an automorphism of R such that a(y) = q - l y  and ~ can be 

viewed as an inner q-skew a-derivation of R induced by a nilpotent element y. 

The construction of ]~ and a-simplicity of R yield that ]~ is also a-simple. 

We use the following rule (cf. [3, 2.5]): 

k ( k ) q a k - ' 5 ' ( a ) y k - '  
(3I) = Z i 

i=O 

for any a E R and any nonnegative integer k, where (~)q is the evaluation at t = q 

of the polynomial function 

( k ) t =  ( t k - - 1 ) ( t k - l - - 1 ) ' " ( t k - ' + l - - 1 )  
/ - 1 ) ( t , - 1  - 1 ) . . .  ( t -  1) 
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Following [3] recall that  if q is a primitive m-th  root of unity, then 

(3.II) jm  = 

for j = 0,1 . . . .  ,k  and 

(3.III) (km~ \ i / q = 0  

for any i which is not divisible by m. Moreover, if 0 < s < m - 1 and 0 < i < s, 

then 

(3.IV) (mkz+ S)q = i 

is nonzero for any positive integer k which is not divisible by In particular (k)q 

rt2. 

LEMMA 3.1 : There exists a nontrivial right R(6)-module homomorphism O: R 
R (~) such that O(A) r 0 for every nonzero left (a, 8)-stable ideal A of R. 

Proof: First notice that  i rA is a nonzero left (a,5)-ideal of R, then ~n- l (A)  ~- 0. 

To this end, assume (f"- l (A) = 0 and take 0 r a �9 A, such that  5(a) = 0. Then 

0 = 5n-l(Ra) = ~n-l(R)a. Hence a E r.annR(6n-a(R)), a contradiction. 

Since yn = 0 in R, using the formula (3.I) we get 

(3.v) a"- lS(r)y  "-1 + - - .  + + = 0 
n - 1  

for any r E R 

Consider the case when (n-]  ~ 0. It  holds in particular if either q is not a 

root of unity or q = 1 and charK = 0 or if q is a primitive m- th  root of unity 

and n is not divisible by m. Using the above equality and the fact that  (f n-1 is 

nonzero on any nonzero (a, (f)-stable left ideal of R one gets, by easy induction, 

that  in this case L = 1.annn(y) r 0. Notice that  L is a left (a, (f)-stable ideal of 

R. Hence LR = R and R9 = LRy C LyR + L(I(R) = L~(R). Thus Ry C_ R. 
Now assume that  q is a primitive m-th  root of unity. If n = m k  and k is not 

divisible by the characteristic of K, then by (3.II) (,n(k;1))q = (kk-1) = k r 0. 

Applying the same argument one obtains that  L -- l.annR(y m) r 0. Since (V' is 

an ordinary derivation, we obtain that  Ry "~ C_ R. 
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Finally if n = rnpSl (where p = charK > 0 and p ~ l), then (rap, q - l )  = 
= m s 

(~.~ '1,)  = ( I l l )  r  In thiscase one gets that  L l.annn(y ' ) r 0 and since 

5 mp is a derivation, Ry mp C_ R. 

Consider the map 0: R ~ / ~  given by 

n - - 1  

(a.VI) O(r) = ~ q-(n- l lky~-k-~k(r)yk.  
k=0 

Since yn = 0 and a(0(r) )  = ~k=0~-I q_(n_l)(k+l)y~_k_lak+l(r)yk ' it follows that  

~(O(r)) = yO(r) - a(O(r))y = 0. Therefore 0 maps R into /~(~). We will show 

that  O(R) C_ R (~). This is clear when n is not divisible by m, since R9 C_ R. 

Assume that  n is divisible by rn, that  is n = rnk . Making use of the formula 

(3.I) we may write 

~-1 ~ - 1 / j \  . 
O(r) = E S i a " - l - i S k ( r ) y n - l - i  where Si = E I q - (n - l - , ) (n - l -Q  

i=0 j= i  

Moreover, an easy computation shows that  the above formula reduces to the 

following: 
k 

j=0 

This gives O(R) C R( ~, since Ry m C_ R in this case. 

If in addition eharK = p > 0 and n = rnpSl where p ~ l, then it is easy to see 

that  
l 

j=0 

But in this case Ry rap" C_ R, so O(R) c_ R. 

Now let A be a nonzero left (a, 5)-stable ideal of R. Assume that  O(A) = O. 
The above formulas for 0 imply that  depending on the characteristic of K we 

have either 

5"-~(A)y "-~ = O(A)y ~-~ = 0 

or  

or  

5"-~(A)y ~(k-~) = O(A)y '~(k-') = 0 

~" - l (A)y~V ' ( ' - l )  = O(A)y roy'(t-l) = O. 
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Therefore A' = l .annA(y n - l )  (respectively, A ~ = l .annA(y re(k-l))  or A'  = 

1.annA(ymp'(~-l))) is a nonzero (a, 6)-stable left ideal of R. Repeating this proce- 

dure we can construct a nonzero (a, ~)-stable left ideal B of R such that O(B) = 0 

and B y  = 0 ( B y "  = 0 or B y  rap" = 0). Hence again the above formulas for 0 

imply that  ~n-I (B)  --- 0, a contradiction with nontriviality of g~-I on nonzero 

(a, 6)-stable left ideals of R. | 

As a side effect of the proof of the above lemma we obtain the following 

generalization of a classical result of Herstein: 

COROLLARY 3.2: Suppose that qi + qi-1 + . . .  + 1 # 0 for all i E N and 6 

is a ni lpotent  q-skew derivation o f  a a-s imple algebra R. Then there exists  a 

ni lpotent  element a E R such that  ~(r) = ar - r~ a for all r E R,  i.e. ~ is an inner 

a-derivat ion adjoint to a. 

Proof: We know that  6 can be view as an inner q-skew a-derivation of R adjoint 

to a nilpotent element y. We have seen in the proof of Lemma 3. ! that the 

formula (3.V) and the assumption imposed on q imply that R y  C_ R.  This means 

that y E R. Thus R = R and the thesis follows. | 

Henceforth 0 will denote the homolnorphism defined in Lemma 3.1 and T will 

stand for O(R). 

COROLLARY 3.3: I f  ] E R (6) is such that a ( f )  = f and T y n - l  f = 0, then 

y n y l f  : O. 

Proof: Consider the extension of 0 to R. Recall that R is a-simple. Lemma 3.1 

implies, in particular, that 0(,4) r 0 for any nonzero (a, 6)-stable left ideal ,4 of 

R. Notice that  in our situation y , ~ - l f  E ~(6) and R y  n - i f  is a (a, 6)-stable left 

ideal of R. Hence if y , ~ - l f  # O, then 0 # O(Ry '~- l f )  = T y n - l f .  Consequently 
y n - l  f : O. | 

LEMMA 3.4: I f  R is left artinian and I3 is the prime radical o f  R (~), then I3 is 

ni lpotent  and y " -  l B = By '~-1 = O. 

Proo~ It is well known that nil subrings of artinian rings are idlpotent. Hence 

B is nilpotent. Notice that O(RB) = O(R)B C_ B. Since 13 is nilpotent, there 

exists an integer l such that O(RI3) l = O. Then 

0 -= O(RB)ly  n-1 = y ' * - l R I 3 y n - l ' "  y " - l R B y  '~-1. 
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Hence (RByn-1)  I+1 = 0. On the other hand RBy n-1 is a (a, (f)-stable left ideal 

of /~,  so RBy n-1 = 0 and in particular By n-1 = O. Since for any b �9 R (~), 

yb = a( b )y, we have also that  yn- l  B = O. | 

It is easy to check, using the formula (3.VI) defining 0 and a(y) = q- ly ,  that 

Oa = qn-lat9 and O(arb) = an-l(a)O(r)b for all a,b �9 R (~) and r �9 R. This 

shows that  T is a nonzero a-stable ideal of R (~). Let :F = T / B ( T ) ,  where B(T) = 

T N B(R (~)) is the prime radical of T.-wil l  denote the canonical homomorphism 

from T to T. Keeping the above notation we have: 

LEMMA 3.5: Suppose R is left artinian. Then T is a semiprime artinian algebra. 

Proof: First notice that 7 ~ r 0. Indeed, R T  is a nonzero (a, 5)-stable left ideal 

of R. Thus, by Lemma 3.1, 0 r O(RT) = T 2. Hence, using simple inductive 

argument, we get T k+l = O(RT k) ~ 0 for any k E N. On the other hand, Lemma 

3.4 yields that B(T) is nilpotent. Thus T r B(T).  

Let L denote a nonzero left ideal of T. Then 7~L r 0, because 7 ~ is semiprime. 

We claim that  L contains a minimal left ideal. Indeed, if L is not minimal then 

there exists a left ideal L1 of T such that L D L1 D B(T) and L D T/~I -7/: 0. If 

T/J1 is not minimal, we can pick a left ideal L2 of T such that TL1 D L2 D 13(T). 

Then 7~/~1 D T/S2 ~- 0. Thus, continuing this process we can find a descending 

chain {Lk} of left ideals of T such that 

(3.VII) TLI D TL2 D ... D B(T). 

Consider the descending chain RLI D_ RL2 D_ ... of left ideals of R. Since R 

is left artinian, there is k C N such that RLk = RLk+I. Hence, applying 0, we 

obtain TLk = TLk+I. This contradicts (3.VII) and shows that every nonzero 

left ideal L of :f contains a minimal left ideal. This means that the socle Soc(:f) 

of T is essential in T. 

On the other hand Soc(7 ~) -- ~ , ~ r  Li, where Li, for i E I, are left ideals of T 

minimal over B(T).  In particular, TLi  = Li for every i. We show that the above 

direct sum must be finite. Assume L,1 @ L2 0 " "  (9 Lk 0 " .  g Soc(7~). For every 

k �9 N set Mk = Lk + Lk+l + . . .  and _l~,Ik = RLk + RLk+I + . . . .  Then {Mk}ker~ 
c o  

is a strictly descending chain such that O(l~Ik) = ~ j = k  TL j  = Mk for all k �9 N. 

However, this is impossible since R is left artinian, thus/Qk = hS/k+l for k >> 1. 

This means that Soc(7 ~) is a finite direct sum of minimal left ideals of 7 ~ and 

shows that  Soc(T) is a semisimple artinian ring. In particular it possesses a unit 

element. Therefore Soc(7 ~) is a direct summand of T. Consequently, T = Soc(T) 

is a semiprime artinian algebra, since Soc(7 ~) is essential in T. | 
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LEMMA 3.6: Suppose that R is left artinian, q is a primitive m-th root of unity 

and a m = idR. Then there exists an idempotent e E T such that a(e) = e and 

~ = l i n T " .  

Proof: We know, by Lemma 3.5, that  :F has the unit element ~ for some a E T. 

Since a(T)  : T, a induces an automorphism on T = T / B ( T )  and a(~) : 5. 

I t  means that  ai(a) - a E B(T) for every i > 0. Since q is a primitive m-th  

root of unity and a m = idR, m is invertible in the base field K and the element 
1 rn--1 al = ~ ~i=o ai(a) is fixed by a. Clearly d t =  ~. Thus, using [1, Proposition 

27.1], we can lift the idempotent a-1 to an idempotent e of T such that  a(e) = e 

and ~ = ~. II 

Now we are ready to prove the following main result of this section: 

THEOREM 3.7: Let R be a a-simple algebra and 5 be a nilpotent q-skew a- 

derivation such that q is a primitive m-th root of unity and a m = idn. Then 

R (~) is left artinian provided R is left artinian. 

Proof: Suppose R is left artinian. We will proceed by induction on n = n(R) = 

min {k [ r.annR(~k(R)) ~- 0}. If n = 1, then (f = 0 and the thesis follows. 

Suppose n > 1. By Lemmas 3.5 and 3.6, T = T / B ( T )  is semiprime artinian 

and there exists an idempotent e C T such that  a(e) = e and ~ = e + B(T) is the 

unity of T. We have 

(3.VIiI) T = Te + B(T) = eT + B(T) = eTe + B(T).  

Let f = 1 - e. Since f E R (a) and a ( f )  = f ,  the algebra f R f  is (a, (f)-stable. 

Moreover, by [8, Theorem 21.11], f R f  is a-simple and artinian, as R has these 

properties. 

We claim that  n ( f R f )  < n = n(R).  Recall that  (f is an inner a-derivation of 

adjoint to y and a(y) = q - l y .  Hence, it is easy to check that  for any K-linear 

subspace U of R and k E N we have 

k 

 k(g) c_ yk-'a'(v)y'. 
i=0 

Using decomposition (3.VIII) and Lemma 3.4 we obtain 

T y n - l  f = (Te + B(T ) ) yn - l  f = T e f y  n-1 + B ( T ) y n - t  f = O. 

Now, it follows from Corollary 3.3 that  y , , - l f  = 0. Notice also that  y f  = 

a ( f ) y  + 5( f )  = fy .  Hence, using the formula (3.IX) we obtain 

(3.X) 5 n - l ( f R f )  C y n - 2 f R f y  + y n - a f R f y 2  + . . .  + y f R f y  n-2. 



Vol. 121, 2001 CONSTANTS OF ALGEBRAIC q-SKEW DERIVATIONS 277 

[ fn  = 2, then f y  = y f  and the above formula yields that  5( fRf )  = 0. I fn  > 2, 

then for any sequence il, i2, . . . ,  in-l, where 1 _< ij _~ r~ - 1 for j = 1, 2 , . . . ,  n - 1, 

there exists 1 _< k < n - 1 such that ik <_ ik+l. Using this observation together 

with the formula (3.X) one can check that (hn-l( fRf))  "-1 = 0. This shows 

that  for any n > 2, r.annyny(hn-l(fRf)) ~ O. In particular, this means that  

n ( f R f )  < n = n(R). Therefore the inductive hypothesis applied to f R f  yields 

that ( f R f )  (~) is left artinian. Moreover, since f = f2 E R (~) and a ( f )  = f ,  

(fRf)(~) = fR(6)f. 
Remark that : -- T/B(T) "~ T + B(R(~))/B(R (~)) is naturally included in 

R(~)/B(R(~)), ~R(~) = T and :Ff = ] T  = 0. Thus, the Pierce decomposition of 

R(~) /13(R (~)) reduces to 

(3.XI) R(~)/B(R (~)) = T @ (fR(6)f + B(R(~)))/B(R(~)). 

Therefore R(~)/B(R (~)) is semiprime artinian. 

Recall that,  by Lemma 3.4, B = B(R (~)) is nilpotent. Hence, in order to 

complete the proof, it is enough to show that  Bk/B k+x is an artinian left R(~)/I3 - 
module for any k E N. Clearly we can decompose I3k/13 k+l into a direct sum of 

additive subgroups as follows: 

Bk /B k+l = eB k + Bk+I /B k§ @ f B  k + Bk+I /B k+t. 

In fact, due to (3.XI), components of the above decomposition are left R(~)/B - 
modules. Thus it is enough to prove that both components are artinian. 

Since R is a-simple and a ( f )  = f ,  we have R f R  = R. In particular, 1 = 
k ~i=1 aJb~ for some suitable a~, b~ E R, 1 < i < k. Then, for any r E R, we have 

k k 

fr = f r  ~ a, fb~ = E(fra,f)(fb,). 
i=1 i=1 

This yields that  f R  is a finitely generated left fRf-module with generators fbi, 

i E { 1 , 2 , . . . , k } .  
Applying observations from the beginning of Section 2 to the algebra f R f  we 

can conclude that  f R f  is artinian as left fR(6)f-module. Hence, by the remark 

above, f R  is a finitely generated as left fR(~)f-module. This shows that  f R  
and, consequently, f B k +  Bk+I/B k+x are artinian as left fR(~)f-modules. This 

together with (3.XI) imply that f B  k + Bk+I/B k+l is artinian over R(6)/B. 
We claim that  eB k + Bk+X/B k+l is also artinian as left R(~)/B-module. Using 

the decomposition (3.XI), it is clear that this is equivalent to showing that  eI3k+ 
Bk+l/Bk+l is artinian over T. To this end, recall that T is semiprime artinian, so 
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eB k + Bk+I/B k+l is a semisimple left T-module. Thus, it is enough to show that  

eB k + 13k+1/I3 k+l does not contain infinite direct sum of nonzero T-submodules. 

Assume that ~ i eN Li c el3 k + Bk+l/13 k+l where 0 ~ Li = L, + Bk+I/B k+l 

for some suitable Li C_ eB k + B k+l C_ R(6). Since TLi = Li, we also have 

Li = TLi  + Bk+I/B k+l. For every j E N define Mj = B k+l + ~ = j  TLi  and 

]~lj = ~-~,~=j RLi.  Then {Mj}je • is a strictly descending chain such that 

o ~  o o  

B k+l + O(lVIs) = B k+' + E O(R)L, = B k+l + Z TL,  = Mj 
i=s i=j 

for all j E N. Notice that this is impossible since/tS/'s = .~/j+l for j >> 1, as R is 

left artinian. This yields that eBk+Bk+l/B k+l is artinian as a left R('S)/B-module 

and completes the proof of the theorem. | 

4. G o i n g  down ,  t h e  gene ra l  c a s e  

Throughout this section we assume that R is semiprime artinian. Then R is 

a direct product of simple artinian algebras. Let 1 = el + " "  + er be the de- 

composition of 1 into the sum of orthogonal centrally primitive idempotents. 

Then a permutes the set {e l , . . .  ,er}. If (9 denotes an orbit of this action, then 

Ro  = (~eeO eR is a-simple and the restriction of 6 to Ro is a skew derivation of 

Ro.  Thus, while proving the artinian property of R (6) we may assume, without 

loss of generality, that R -= Ro is a-simple. 

PROPOSITION 4.1: Suppose that 6 is an algebraic q-skew a-derivation of R such 

that q is a primitive m-th root of unity and a m = idn. Then R (6) is left artinian. 

Proofi Since q is a root of unity, we can apply Proposition 1.4 to obtain T = t(R) 

is left artinian. Lemma 1.2 and assumptions on a yield that ~rn is a usual 

derivation and T = t~,, (R). Hence, by [6, Lemma 5], T is semiprime. Therefore 

we may replace R by T and assume that ~ is nilpotent. Moreover, as we have 

seen at the beginning of the section, we may akso assume that R is ~-simple. Now 

the proposition is a direct consequence of Theorem 3.7. | 

As a direct consequence of the above proposition and Theorem 2.4 we obtain: 

COROLLARY 4.2 (Theorem 4.8, [5]): If  R is a semiprime algebra and 5 is an 

algebraic derivation of R then R (~) is left artinian if and only i f  R is left artinian. 

The following lemma is a generalization of its classical counterpart, when ~ is 

a usual derivation. 
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LEMMA 4.3: Suppose  that a E R is a nilpotent element such that a(a)  = q - l a .  

Let  ~ be the inner a-derivation adjoint to a. Then ~ is a nilpotent q-skew deriva- 

tion. 

Proof: It is standard to check that 5a = qaS, i.e. 5 is q-skew. 

Let EndK(R, +) stand for the algebra of all endomorphisms of K-vector space 

R and l~, ra E Endg(R ,  +) denote the left and right multiplications by a, respec- 

tively. Then la commutes with ra and, making use of a(a)  = q - l a ,  it is easy to 

compute that ala = q - l l~a  and ar~ = q- l raa .  

Using the above, it is standard to check that 

5 2 n - 1  : ( l  a - -  r a a )  2 n - 1  = O, 

where n C N is such that a n = O. This shows that ~ is nilpotent. I 

Let R[x,  a] denote the skew polynomial ring of automorphism type. It is well- 

known that  a can be extended to an automorphism of R[x, a] by setting a(x )  = x. 

The following lemma seems to be known; we present only the sketch of its proof. 

LEMMA 4.4: Suppose that R is a-simple. Let  M be a nonzero a-stable ideal o f  

R[x,  a] such that R M M = O. Then there exist n > 0 and a monic polynomial  

f = x '~+1 + cnx n + . . "  + co E R[x,a] such that: 

(1) g = f R [ x ,  a] = R[x,  a]f .  

(2) a(ci) = ci for all 0 < i < n. Moreover, i f  ci # 0 for some 0 < i < n then ci 

is invertible in R and an+ l - i ( r )  = cite-( 1 for all r e R.  

(3) Suppose that co # 0 and let s E N be the smallest number  such that  a s is 

an inner automorphism adjoint to a a-stable element c E R.  Then  s divides 

both n + 1 and i, 0 < i < n, provided ci # O. 

Proof: Let A denote the set of all leading coefficients of polynomials from M 

of minimal nonzero degree, say n + l .  Then I = A U { 0 }  is an ideal of R. 

Moreover, a ( I )  = I since M is a-stable. Now, a-simplicity of R yields I = R. 

Thus M contains a unique polynomial f of minimal degree which is monic. Let 

f = x '~+1 + c,~x n + " "  + co. 

By making use of division algorithm, we obtain (1). 

a ( f )  E a ( M )  = M is monic. Hence a ( f )  = f ,  i.e. a(c~) = c, for all 0 < i < n. 

For any r ~ R,  f r  - a n + l ( r ) f  C M is of degree smaller than n + 1. Therefore 

f r  = a n + l ( r ) f  for all r E R. This implies the statement (2). 

Suppose co # 0. Then the choice of s and statement (2) yield that s divides 

both n + 1 and n + 1 - i for all 0 < i < n such that ci # 0. This gives (3). I 
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THEOREM 4.5: Suppose both a and ~ are algebraic and R is left artinian. Then 

R (~) is left artinian. 

Proof: As was noted at the beginning of the section, we may additionally assume 

that  R is a-simple. 

Notice that  R has a natural structure of a left module over the skew polynomial 

ring R[x, a], which is given by 

r , x  r = r ,  a i ( r )  

Let M = annR[~,~](R). Clearly M (1 R = 0. Moreover, since a is algebraic, 

M r 0. Obviously a ( M )  C M. Therefore a(M)  = M,  since R[x, a] is noetherian 

as R is such. Let M be a maximal ideal of R[x, a] in the class of a-stable ideals 

such that  M C_ M and M M R  = O. Since R is a-simple and M is a-stable, we can 

apply Lemma 4.4 to obtain M = fR[x,  a] = R[x, air  for some monic polynomial 

f E R[x, a], say of degree n + 1. It  is clear that  the minimal polynomial for a 

has a nonzero free term and is divisible by f .  Therefore the free term Co of f 

is nonzero and the same lemma gives also that  a(co) = Co and a n+l is an inner 

automorphism adjoint to co. 

In the sequel we will make use of the algebra S = R[x, a]/M. M is a-stable, 

so a induces an automorphism of S which is also denoted by a. The choice of M 

and a-simplicity of R yield that  S is a-simple, R is naturally embedded in S and 

S is free as left R-module with basis 1, y , . . . ,  yn, where y denotes the natural  

image of x in S. In particular, S is an artinian left R-module and, consequently, 

S is left artinian. Notice that  the element y is algebraic over K and invertible 

in S, since the minimal polynomial for a belongs to M and co is invertible in R. 

In particular, a is an inner automorphism of S adjoint to y and S has to be a 

simple artinian ring. 

CASE 1: a is an inner automorphism of R. 

Let us remark that  in this case we do not use the assumption that  a is algebraic. 

Because R is a-simple and a is inner, R is in fact simple. Let a E R be an 

invertible element such that  a ( r )  -- a - l r a  for r E R. Then for any r, w E R we 

have 

a (r o) = a (r)w + = + 

Thus d = a(f is a derivation of R. For any l E N, d I E ~'~l~= 0 R(f i and ~ is algebraic 

over the base field K,  thus d is algebraic over R. Now [10, Theorem 1.8] yields 

that  d is algebraic over C --  the center of R. Let F = C (d). Since the restriction 

of d to C is a C-algebraic derivation of the field C, we can apply [4, Proposition 



Vol. 121, 2001 CONSTANTS OF ALGEBRAIC q-SKEW DERIVATIONS 281 

2.1] and conclude that  dimF C is finite. Now it is standard to see that  d is F-  

algebraic. Applying Corollary 4.2 to the simple artinian F-algebra R, we obtain 

that R (d) is left artinian. This completes the proof in this case, since R (~) = R (d). 

CASE 2: q is not a root of unity. 

In this case, by Lemma 2.3 and Corollary 3.2, there exists a nilpotent element 

a E R such that  

5 ( r ) = a r - r a a  for a l l r G R .  

Considering (ia(r ~ = qa(i(r ~-1) one can easily check that 

( a - q a a ) r = r a ( a - q a  a) for a l l r e R .  

This implies that  a is either inner or a(a) = q- la .  If a is inner, then R (~) is left 

artinian by Case 1. Thus we will assume that a(a) = q- la .  

Let 5 also denote the inner a-derivation of S = R[x, a ] / M  adjoint to a. The 

element a is nilpotent and a(a) = q-la;  thus, by Lemma 4.3, (i is nilpotent on 

SI Therefore, as a is inner on S, we may apply Case 1 to S and conclude that  

S (~) is left artinian. 

For any k C N and r E R we have 

(i(ry k) = ary k - a(ryk)a  -_ ary k - rOyk a 

= (at - q-kraa)yk  

where y denotes the natural image of x in S. 

The above equation shows that Ry  k is a (f-stable K-subspace of S for any 

k E N. Hence 

i=0 

Note that  if L1 C L2 are left ideals of R (~) then 

S(~)L1 = L1 @ (Ry)(~)L1 @ . . .  @ (Ryn)(~)L1 

C L2 @ (Ry)(~)L2 @ " .  @ (Ryn)(~)L2 = S(~)L2. 

This implies that R (~) is left artinian and completes the proof in this case. 

CASE 3: q is a primitive m-th root of unity. 

Recall that  some nonzero power of a is an inner automorphism adjoint to a a- 

stable element. Let l E N and c E R be such that al(r) = crc -1 for r E R and 

a(c) = c. Then, for any r e R we have 

a-l( ial(r)  = a-l( i(crc -1) = c-l(( i(c)rc -1 + ca(r)(i(c -1) + c(i(r)c-1)c 

= c-l(i(c)r + a(r)(i(c-1)c + (i(r) 
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and 

a- l~a l ( r )  = ale(r). 

Using the above equalities together with 5(c-1)c = - c - i S ( c )  we obtain 

(4.I) (qt _ 1)5(r) = c - lS (c ) r  - a ( r )c - l~ (c )  

for every r E R. 

If  qt # l ,  then the above equation shows tha t  6 is an inner a-derivat ion of R 

adjoint to a = (q~ - 1)-1c-15(c) .  Thus, similarly as in Case 2, we may consider 

as a a-derivat ion of S. Notice tha t  a(a) = a(c-1)ah(c)  = q - l c - l h ( c )  = q - l a  

and ~f is algebraic on S. Indeed, by Lemma 1.2, 5m is a 1-skew am-derivat ion and 

(fro(y) = 0. This yields tha t  5m is algebraic. Now we can use the same argument  

as in Case 2 to obtain tha t  R (6) is left artinian. 

Suppose tha t  ql = 1. T h e n  the equation (4.I) shows that  c -15(c) r  = 

a(r)c-15(c)  for any r E R. Hence, if 5(c) # O, then c- l~(c)  is invertible in 

R since R is a-simple. Thus a is inner and Case 1 completes the proof  in this 

case. Therefore we may assume that  5(c) = 0. 

Let f = x '~+1 + c , z " + . .  "+co e R[x,a] be such that  M = fR[x ,a ]  = R [ x , a ] f  

and s denote the smallest natural  number  such tha t  a 8 is inner adjoint to a a-  

stable element. The above considerations together with Lemma 4.4 imply that ,  

wi thout  loss of generality, we may assume that  q8 = 1, 5(ci) = O, a(c,)  = ci and 

s divides bo th  n + 1 and i provided ci # 0, where 0 < i < n. 

It is s tandard  to check tha t  the automorphism a of R can be extended to an 

au tomorph i sm ~ of  R[x, a] by sett ing 5(x)  = qx. 

Let D: R[x, a] --4 R[x, a] be a map defined as follows: 

- /E r,x,): E 
Then D is additive and for any u, v C R and k, l _> 0 we have 

D ( u x  k �9 vx  l) = D ( u a k ( v ) x  k+l) 

=  (uak(v))z = + 

=  (u)ok(v)z + a(u)q%k (v)z 

=  (u)z%z + a(u)q%k (v)z Z 

= D ( u x k ) v x  z + 5 (uxk )D(vx l ) .  

This shows that  D is P-derivation of R[x, hi. 

The properties of f and q described above guarantee that  &(f) = f and D ( f )  = 
0. Therefore 5 ( M )  = M ,  D ( M )  C M .  Consequently, 5 and D induce an 
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automorphism and a skew derivation (also denoted by b and D, respectively) of 

s = nix ,  o ] / M .  
Recall that  y denotes the natural image of x in S, y is invertible in S and a 

is inner on S induced by y. Let r = a - l b .  Then r(~--~riy i) = ~ q ' r i y  i for any 

Y]~ r,y ~ 6 S. Since q is a primitive m-th root of unity, the order of T is finite and 

equal to m. Let d = y - l D .  Then for any u, v E R and k, l > 0 we have 

and 

d(uy k . vy l) = y - l  D(uyk)vyl + y - l  b(uyk)D(vyl)  

= y - l D ( u y k ) v y t +  ( y - l b ( u y k ) y ) y - l D ( v y t )  

= d( yk)vy ' + r( yk)d(vy 

dr(uy k) = d(uq~y k) -= qky-* D(uy ~) = qky-16(u)yk -= qv(y-16(u)y k) 

= qTd(uy~). 

The above equations shows that  d is a ~--derivation of S and d r  = qT-d. 

Let A stand for the K-subalgebra of EndK(S, +) generated by D and y - l ,  

where we consider S C_ EndK(S, +) as left multiplications by elements from 

S. Making use of d(y - I )  = 0 and r(y -1) = q - l y - 1  one can compute that 

Dy -1 =- q - l y - l D .  Let us recall that  y-1 is algebraic over K and notice that  D 

is algebraic on S, because the restriction of D to R is equal to 6 and D(y) = O. 

Therefore A is finite dimensional over K and d = y -1D 6 A is algebraic over K.  

Now, Proposition 4.1 applied to (S, d, r)  shows that S (d) is left artinian. 

Remark that 

n 

i=O 

Hence, similarly as in Case 2, we deduce that R (6) is left artinian. This completes 

the proof of the theorem. | 
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